Chatbot Message Persistence
Being able to store and load chat messages is crucial for most AI chatbots.
In this guide, we'll show how to implement message persistence with useChat
and streamText
.
This guide does not cover authorization, error handling, or other real-world considerations. It is intended to be a simple example of how to implement message persistence.
Starting a new chat
When the user navigates to the chat page without providing a chat ID, we need to create a new chat and redirect to the chat page with the new chat ID.
import { redirect } from 'next/navigation';import { createChat } from '@util/chat-store';
export default async function Page() { const id = await createChat(); // create a new chat redirect(`/chat/${id}`); // redirect to chat page, see below}
Our example chat store implementation uses files to store the chat messages. In a real-world application, you would use a database or a cloud storage service, and get the chat ID from the database. That being said, the function interfaces are designed to be easily replaced with other implementations.
import { generateId } from 'ai';import { existsSync, mkdirSync } from 'fs';import { writeFile } from 'fs/promises';import path from 'path';
export async function createChat(): Promise<string> { const id = generateId(); // generate a unique chat ID await writeFile(getChatFile(id), '[]'); // create an empty chat file return id;}
function getChatFile(id: string): string { const chatDir = path.join(process.cwd(), '.chats'); if (!existsSync(chatDir)) mkdirSync(chatDir, { recursive: true }); return path.join(chatDir, `${id}.json`);}
Loading an existing chat
When the user navigates to the chat page with a chat ID, we need to load the chat messages from storage.
The loadChat
function in our file-based chat store is implemented as follows:
import { UIMessage } from 'ai';import { readFile } from 'fs/promises';
export async function loadChat(id: string): Promise<UIMessage[]> { return JSON.parse(await readFile(getChatFile(id), 'utf8'));}
// ... rest of the file
Validating messages on the server
When processing messages on the server that contain tool calls, custom metadata, or data parts, you should validate them using validateUIMessages
before sending them to the model.
Validation with tools
When your messages include tool calls, validate them against your tool definitions:
import { convertToModelMessages, streamText, UIMessage, validateUIMessages, tool,} from 'ai';import { z } from 'zod';import { loadChat, saveChat } from '@util/chat-store';import { openai } from '@ai-sdk/openai';import { dataPartsSchema, metadataSchema } from '@util/schemas';
// Define your toolsconst tools = { weather: tool({ description: 'Get weather information', parameters: z.object({ location: z.string(), units: z.enum(['celsius', 'fahrenheit']), }), execute: async ({ location, units }) => { /* tool implementation */ }, }), // other tools};
export async function POST(req: Request) { const { message, id } = await req.json();
// Load previous messages from database const previousMessages = await loadChat(id);
// Append new message to previousMessages messages const messages = [...previousMessages, message];
// Validate loaded messages against // tools, data parts schema, and metadata schema const validatedMessages = await validateUIMessages({ messages, tools, // Ensures tool calls in messages match current schemas dataPartsSchema, metadataSchema, });
const result = streamText({ model: openai('gpt-4o-mini'), messages: convertToModelMessages(validatedMessages), tools, });
return result.toUIMessageStreamResponse({ originalMessages: messages, onFinish: ({ messages }) => { saveChat({ chatId: id, messages }); }, });}
Handling validation errors
Handle validation errors gracefully when messages from the database don't match current schemas:
import { convertToModelMessages, streamText, validateUIMessages, TypeValidationError,} from 'ai';import { type MyUIMessage } from '@/types';
export async function POST(req: Request) { const { message, id } = await req.json();
// Load and validate messages from database let validatedMessages: MyUIMessage[];
try { const previousMessages = await loadMessagesFromDB(id); validatedMessages = await validateUIMessages({ // append the new message to the previous messages: messages: [...previousMessages, message], tools, metadataSchema, }); } catch (error) { if (error instanceof TypeValidationError) { // Log validation error for monitoring console.error('Database messages validation failed:', error); // Could implement message migration or filtering here // For now, start with empty history validatedMessages = []; } else { throw error; } }
// Continue with validated messages...}
Displaying the chat
Once messages are loaded from storage, you can display them in your chat UI. Here's how to set up the page component and the chat display:
import { loadChat } from '@util/chat-store';import Chat from '@ui/chat';
export default async function Page(props: { params: Promise<{ id: string }> }) { const { id } = await props.params; const messages = await loadChat(id); return <Chat id={id} initialMessages={messages} />;}
The chat component uses the useChat
hook to manage the conversation:
'use client';
import { UIMessage, useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';import { useState } from 'react';
export default function Chat({ id, initialMessages,}: { id?: string | undefined; initialMessages?: UIMessage[] } = {}) { const [input, setInput] = useState(''); const { sendMessage, messages } = useChat({ id, // use the provided chat ID messages: initialMessages, // load initial messages transport: new DefaultChatTransport({ api: '/api/chat', }), });
const handleSubmit = (e: React.FormEvent) => { e.preventDefault(); if (input.trim()) { sendMessage({ text: input }); setInput(''); } };
// simplified rendering code, extend as needed: return ( <div> {messages.map(m => ( <div key={m.id}> {m.role === 'user' ? 'User: ' : 'AI: '} {m.parts .map(part => (part.type === 'text' ? part.text : '')) .join('')} </div> ))}
<form onSubmit={handleSubmit}> <input value={input} onChange={e => setInput(e.target.value)} placeholder="Type a message..." /> <button type="submit">Send</button> </form> </div> );}
Storing messages
useChat
sends the chat id and the messages to the backend.
The useChat
message format is different from the ModelMessage
format. The
useChat
message format is designed for frontend display, and contains
additional fields such as id
and createdAt
. We recommend storing the
messages in the useChat
message format.
When loading messages from storage that contain tools, metadata, or custom data
parts, validate them using validateUIMessages
before processing (see the
validation section above).
Storing messages is done in the onFinish
callback of the toUIMessageStreamResponse
function.
onFinish
receives the complete messages including the new AI response as UIMessage[]
.
import { openai } from '@ai-sdk/openai';import { saveChat } from '@util/chat-store';import { convertToModelMessages, streamText, UIMessage } from 'ai';
export async function POST(req: Request) { const { messages, chatId }: { messages: UIMessage[]; chatId: string } = await req.json();
const result = streamText({ model: openai('gpt-4o-mini'), messages: convertToModelMessages(messages), });
return result.toUIMessageStreamResponse({ originalMessages: messages, onFinish: ({ messages }) => { saveChat({ chatId, messages }); }, });}
The actual storage of the messages is done in the saveChat
function, which in
our file-based chat store is implemented as follows:
import { UIMessage } from 'ai';import { writeFile } from 'fs/promises';
export async function saveChat({ chatId, messages,}: { chatId: string; messages: UIMessage[];}): Promise<void> { const content = JSON.stringify(messages, null, 2); await writeFile(getChatFile(chatId), content);}
// ... rest of the file
Message IDs
In addition to a chat ID, each message has an ID. You can use this message ID to e.g. manipulate individual messages.
Client-side vs Server-side ID Generation
By default, message IDs are generated client-side:
- User message IDs are generated by the
useChat
hook on the client - AI response message IDs are generated by
streamText
on the server
For applications without persistence, client-side ID generation works perfectly. However, for persistence, you need server-side generated IDs to ensure consistency across sessions and prevent ID conflicts when messages are stored and retrieved.
Setting Up Server-side ID Generation
When implementing persistence, you have two options for generating server-side IDs:
- Using
generateMessageId
intoUIMessageStreamResponse
- Setting IDs in your start message part with
createUIMessageStream
Option 1: Using generateMessageId
in toUIMessageStreamResponse
You can control the ID format by providing ID generators using createIdGenerator()
:
import { createIdGenerator, streamText } from 'ai';
export async function POST(req: Request) { // ... const result = streamText({ // ... });
return result.toUIMessageStreamResponse({ originalMessages: messages, // Generate consistent server-side IDs for persistence: generateMessageId: createIdGenerator({ prefix: 'msg', size: 16, }), onFinish: ({ messages }) => { saveChat({ chatId, messages }); }, });}
Option 2: Setting IDs with createUIMessageStream
Alternatively, you can use createUIMessageStream
to control the message ID by writing a start message part:
import { generateId, streamText, createUIMessageStream, createUIMessageStreamResponse,} from 'ai';
export async function POST(req: Request) { const { messages, chatId } = await req.json();
const stream = createUIMessageStream({ execute: ({ writer }) => { // Write start message part with custom ID writer.write({ type: 'start', messageId: generateId(), // Generate server-side ID for persistence });
const result = streamText({ model: openai('gpt-4o-mini'), messages: convertToModelMessages(messages), });
writer.merge(result.toUIMessageStream({ sendStart: false })); // omit start message part }, originalMessages: messages, onFinish: ({ responseMessage }) => { // save your chat here }, });
return createUIMessageStreamResponse({ stream });}
For client-side applications that don't require persistence, you can still customize client-side ID generation:
import { createIdGenerator } from 'ai';import { useChat } from '@ai-sdk/react';
const { ... } = useChat({ generateId: createIdGenerator({ prefix: 'msgc', size: 16, }), // ...});
Sending only the last message
Once you have implemented message persistence, you might want to send only the last message to the server. This reduces the amount of data sent to the server on each request and can improve performance.
To achieve this, you can provide a prepareSendMessagesRequest
function to the transport.
This function receives the messages and the chat ID, and returns the request body to be sent to the server.
import { useChat } from '@ai-sdk/react';import { DefaultChatTransport } from 'ai';
const { // ...} = useChat({ // ... transport: new DefaultChatTransport({ api: '/api/chat', // only send the last message to the server: prepareSendMessagesRequest({ messages, id }) { return { body: { message: messages[messages.length - 1], id } }; }, }),});
On the server, you can then load the previous messages and append the new message to the previous messages. If your messages contain tools, metadata, or custom data parts, you should validate them:
import { convertToModelMessages, UIMessage, validateUIMessages } from 'ai';// import your tools and schemas
export async function POST(req: Request) { // get the last message from the client: const { message, id } = await req.json();
// load the previous messages from the server: const previousMessages = await loadChat(id);
// validate messages if they contain tools, metadata, or data parts: const validatedMessages = await validateUIMessages({ // append the new message to the previous messages: messages: [...previousMessages, message], tools, // if using tools metadataSchema, // if using custom metadata dataSchemas, // if using custom data parts });
const result = streamText({ // ... messages: convertToModelMessages(validatedMessages), });
return result.toUIMessageStreamResponse({ originalMessages: validatedMessages, onFinish: ({ messages }) => { saveChat({ chatId: id, messages }); }, });}
Handling client disconnects
By default, the AI SDK streamText
function uses backpressure to the language model provider to prevent
the consumption of tokens that are not yet requested.
However, this means that when the client disconnects, e.g. by closing the browser tab or because of a network issue, the stream from the LLM will be aborted and the conversation may end up in a broken state.
Assuming that you have a storage solution in place, you can use the consumeStream
method to consume the stream on the backend,
and then save the result as usual.
consumeStream
effectively removes the backpressure,
meaning that the result is stored even when the client has already disconnected.
import { convertToModelMessages, streamText, UIMessage } from 'ai';import { saveChat } from '@util/chat-store';
export async function POST(req: Request) { const { messages, chatId }: { messages: UIMessage[]; chatId: string } = await req.json();
const result = streamText({ model, messages: convertToModelMessages(messages), });
// consume the stream to ensure it runs to completion & triggers onFinish // even when the client response is aborted: result.consumeStream(); // no await
return result.toUIMessageStreamResponse({ originalMessages: messages, onFinish: ({ messages }) => { saveChat({ chatId, messages }); }, });}
When the client reloads the page after a disconnect, the chat will be restored from the storage solution.
In production applications, you would also track the state of the request (in progress, complete) in your stored messages and use it on the client to cover the case where the client reloads the page after a disconnection, but the streaming is not yet complete.
For more robust handling of disconnects, you may want to add resumability on disconnects. Check out the Chatbot Resume Streams documentation to learn more.