Jina AI Provider

patelvivekdev/jina-ai-provider is a community provider that uses Jina AI to provide text and multimodal embedding support for the AI SDK.

Setup

The Jina provider is available in the jina-ai-provider module. You can install it with

pnpm
npm
yarn
bun
pnpm add jina-ai-provider

Provider Instance

You can import the default provider instance jina from jina-ai-provider:

import { jina } from 'jina-ai-provider';

If you need a customized setup, you can import createJina from jina-ai-provider and create a provider instance with your settings:

import { createJina } from 'jina-ai-provider';
const customJina = createJina({
// custom settings
});

You can use the following optional settings to customize the Jina provider instance:

  • baseURL string

    The base URL of the Jina API. The default prefix is https://api.jina.ai/v1.

  • apiKey string

    API key that is being sent using the Authorization header. It defaults to the JINA_API_KEY environment variable.

  • headers Record<string,string>

    Custom headers to include in the requests.

  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. Defaults to the global fetch function. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Text Embedding Models

You can create models that call the Jina text embeddings API using the .textEmbeddingModel() factory method.

import { jina } from 'jina-ai-provider';
const textEmbeddingModel = jina.textEmbeddingModel('jina-embeddings-v3');

You can use Jina embedding models to generate embeddings with the embed or embedMany function:

import { jina } from 'jina-ai-provider';
import { embedMany } from 'ai';
const textEmbeddingModel = jina.textEmbeddingModel('jina-embeddings-v3');
export const generateEmbeddings = async (
value: string,
): Promise<Array<{ embedding: number[]; content: string }>> => {
const chunks = value.split('\n');
const { embeddings } = await embedMany({
model: textEmbeddingModel,
values: chunks,
providerOptions: {
jina: {
inputType: 'retrieval.passage',
},
},
});
return embeddings.map((embedding, index) => ({
content: chunks[index]!,
embedding,
}));
};

Multimodal Embedding

You can create models that call the Jina multimodal (text + image) embeddings API using the .multiModalEmbeddingModel() factory method.

import { jina, type MultimodalEmbeddingInput } from 'jina-ai-provider';
import { embedMany } from 'ai';
const multimodalModel = jina.multiModalEmbeddingModel('jina-clip-v2');
export const generateMultimodalEmbeddings = async () => {
const values: MultimodalEmbeddingInput[] = [
{ text: 'A beautiful sunset over the beach' },
{ image: 'https://i.ibb.co/r5w8hG8/beach2.jpg' },
];
const { embeddings } = await embedMany<MultimodalEmbeddingInput>({
model: multimodalModel,
values,
});
return embeddings.map((embedding, index) => ({
content: values[index]!,
embedding,
}));
};

Use the MultimodalEmbeddingInput type to ensure type safety when using multimodal embeddings. You can pass Base64 encoded images to the image property in the Data URL format data:[mediatype];base64,<data>.

Provider Options

Pass Jina embedding options via providerOptions.jina. The following options are supported:

  • inputType 'text-matching' | 'retrieval.query' | 'retrieval.passage' | 'separation' | 'classification'

    Intended downstream application to help the model produce better embeddings. Defaults to 'retrieval.passage'.

    • 'retrieval.query': input is a search query.
    • 'retrieval.passage': input is a document/passage.
    • 'text-matching': for semantic textual similarity tasks.
    • 'classification': for classification tasks.
    • 'separation': for clustering tasks.
  • outputDimension number

    Number of dimensions for the output embeddings. See model documentation for valid ranges.

    • jina-embeddings-v3: min 32, max 1024.
    • jina-clip-v2: min 64, max 1024.
    • jina-clip-v1: fixed 768.
  • embeddingType 'float' | 'binary' | 'ubinary' | 'base64'

    Data type for the returned embeddings.

  • normalized boolean

    Whether to L2-normalize embeddings. Defaults to true.

  • truncate boolean

    Whether to truncate inputs beyond the model context limit instead of erroring. Defaults to false.

  • lateChunking boolean

    Split long inputs into 1024-token chunks automatically. Only for text embedding models.

Model Capabilities

ModelContext Length (tokens)Embedding DimensionModalities
jina-embeddings-v38,1921024Text
jina-clip-v28,1921024Text + Images
jina-clip-v18,192768Text + Images

Supported Input Formats

Text Embeddings

  • Array of strings, for example: const strings = ['text1', 'text2']

Multimodal Embeddings

  • Text objects: const text = [{ text: 'Your text here' }]
  • Image objects: const image = [{ image: 'https://example.com/image.jpg' }] or Base64 data URLs
  • Mixed arrays: const mixed = [{ text: 'object text' }, { image: 'image-url' }, { image: 'data:image/jpeg;base64,...' }]