Azure OpenAI Provider

The Azure OpenAI provider contains language model support for the Azure OpenAI chat API.

Setup

The Azure OpenAI provider is available in the @ai-sdk/azure module. You can install it with

pnpm add @ai-sdk/azure

Provider Instance

You can import the default provider instance azure from @ai-sdk/azure:

import { azure } from '@ai-sdk/azure';

If you need a customized setup, you can import createAzure from @ai-sdk/azure and create a provider instance with your settings:

import { createAzure } from '@ai-sdk/azure';
const azure = createAzure({
resourceName: 'your-resource-name', // Azure resource name
apiKey: 'your-api-key',
});

You can use the following optional settings to customize the OpenAI provider instance:

  • resourceName string

    Azure resource name. It defaults to the AZURE_RESOURCE_NAME environment variable.

    The resource name is used in the assembled URL: https://{resourceName}.openai.azure.com/openai/v1{path}. You can use baseURL instead to specify the URL prefix.

  • apiKey string

    API key that is being sent using the api-key header. It defaults to the AZURE_API_KEY environment variable.

  • apiVersion string

    Sets a custom api version. Defaults to v1.

  • baseURL string

    Use a different URL prefix for API calls, e.g. to use proxy servers.

    Either this or resourceName can be used. When a baseURL is provided, the resourceName is ignored.

    With a baseURL, the resolved URL is {baseURL}/v1{path}.

  • headers Record<string,string>

    Custom headers to include in the requests.

  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. Defaults to the global fetch function. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

  • useDeploymentBasedUrls boolean

    Use deployment-based URLs for API calls. Set to true to use the legacy deployment format: {baseURL}/deployments/{deploymentId}{path}?api-version={apiVersion} instead of {baseURL}/v1{path}?api-version={apiVersion}. Defaults to false.

    This option is useful for compatibility with certain Azure OpenAI models or deployments that require the legacy endpoint format.

Language Models

The Azure OpenAI provider instance is a function that you can invoke to create a language model:

const model = azure('your-deployment-name');

You need to pass your deployment name as the first argument.

Reasoning Models

Azure exposes the thinking of DeepSeek-R1 in the generated text using the <think> tag. You can use the extractReasoningMiddleware to extract this reasoning and expose it as a reasoning property on the result:

import { azure } from '@ai-sdk/azure';
import { wrapLanguageModel, extractReasoningMiddleware } from 'ai';
const enhancedModel = wrapLanguageModel({
model: azure('your-deepseek-r1-deployment-name'),
middleware: extractReasoningMiddleware({ tagName: 'think' }),
});

You can then use that enhanced model in functions like generateText and streamText.

The Azure provider calls the Responses API by default (unless you specify e.g. azure.chat).

Example

You can use OpenAI language models to generate text with the generateText function:

import { azure } from '@ai-sdk/azure';
import { generateText } from 'ai';
const { text } = await generateText({
model: azure('your-deployment-name'),
prompt: 'Write a vegetarian lasagna recipe for 4 people.',
});

OpenAI language models can also be used in the streamText, generateObject, and streamObject functions (see AI SDK Core).

Azure OpenAI sends larger chunks than OpenAI. This can lead to the perception that the response is slower. See Troubleshooting: Azure OpenAI Slow To Stream

Provider Options

When using OpenAI language models on Azure, you can configure provider-specific options using providerOptions.openai. More information on available configuration options are on the OpenAI provider page.

const messages = [
{
role: 'user',
content: [
{
type: 'text',
text: 'What is the capital of the moon?',
},
{
type: 'image',
image: 'https://example.com/image.png',
providerOptions: {
openai: { imageDetail: 'low' },
},
},
],
},
];
const { text } = await generateText({
model: azure('your-deployment-name'),
providerOptions: {
openai: {
reasoningEffort: 'low',
},
},
});

Chat Models

The URL for calling Azure chat models will be constructed as follows: https://RESOURCE_NAME.openai.azure.com/openai/v1/chat/completions?api-version=v1

You can create models that call the Azure OpenAI chat completions API using the .chat() factory method:

const model = azure.chat('your-deployment-name');

Azure OpenAI chat models support also some model specific settings that are not part of the standard call settings. You can pass them as an options argument:

import { azure } from '@ai-sdk/azure';
import { generateText } from 'ai';
const result = await generateText({
model: azure.chat('your-deployment-name'),
prompt: 'Write a short story about a robot.',
providerOptions: {
openai: {
logitBias: {
// optional likelihood for specific tokens
'50256': -100,
},
user: 'test-user', // optional unique user identifier
},
},
});

The following optional provider options are available for OpenAI chat models:

  • logitBias Record<number, number>

    Modifies the likelihood of specified tokens appearing in the completion.

    Accepts a JSON object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this tokenizer tool to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.

    As an example, you can pass {"50256": -100} to prevent the token from being generated.

  • logprobs boolean | number

    Return the log probabilities of the tokens. Including logprobs will increase the response size and can slow down response times. However, it can be useful to better understand how the model is behaving.

    Setting to true will return the log probabilities of the tokens that were generated.

    Setting to a number will return the log probabilities of the top n tokens that were generated.

  • parallelToolCalls boolean

    Whether to enable parallel function calling during tool use. Default to true.

  • user string

    A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. Learn more.

Responses Models

Azure OpenAI uses responses API as default with the azure(deploymentName) factory method.

const model = azure('your-deployment-name');

Further configuration can be done using OpenAI provider options. You can validate the provider options using the OpenAIResponsesProviderOptions type.

In the Responses API, use azure as the provider name in providerOptions instead of openai. The openai key is still supported for providerOptions input.

import { azure, OpenAIResponsesProviderOptions } from '@ai-sdk/azure';
import { generateText } from 'ai';
const result = await generateText({
model: azure('your-deployment-name'),
providerOptions: {
azure: {
parallelToolCalls: false,
store: false,
user: 'user_123',
// ...
} satisfies OpenAIResponsesProviderOptions,
},
// ...
});

The following provider options are available:

  • parallelToolCalls boolean Whether to use parallel tool calls. Defaults to true.

  • store boolean Whether to store the generation. Defaults to true.

  • metadata Record<string, string> Additional metadata to store with the generation.

  • previousResponseId string The ID of the previous response. You can use it to continue a conversation. Defaults to undefined.

  • instructions string Instructions for the model. They can be used to change the system or developer message when continuing a conversation using the previousResponseId option. Defaults to undefined.

  • user string A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. Defaults to undefined.

  • reasoningEffort 'low' | 'medium' | 'high' Reasoning effort for reasoning models. Defaults to medium. If you use providerOptions to set the reasoningEffort option, this model setting will be ignored.

  • strictJsonSchema boolean Whether to use strict JSON schema validation. Defaults to false.

The Azure OpenAI provider also returns provider-specific metadata:

For Responses models (azure(deploymentName)), you can type this metadata using AzureResponsesProviderMetadata:

import { azure, type AzureResponsesProviderMetadata } from '@ai-sdk/azure';
import { generateText } from 'ai';
const result = await generateText({
model: azure('your-deployment-name'),
});
const providerMetadata = result.providerMetadata as
| AzureResponsesProviderMetadata
| undefined;
const { responseId, logprobs, serviceTier } = providerMetadata?.azure ?? {};
// responseId can be used to continue a conversation (previousResponseId).
console.log(responseId);

The following Azure-specific metadata may be returned:

  • responseId string | null | undefined The ID of the response. Can be used to continue a conversation.
  • logprobs (optional) Log probabilities of output tokens (when enabled).
  • serviceTier (optional) Service tier information returned by the API.

The providerMetadata is only returned with the default responses API, and is not supported when using 'azure.chat' or 'azure.completion'

Web Search Tool

The Azure OpenAI responses API supports web search(preview) through the azure.tools.webSearchPreview tool.

const result = await generateText({
model: azure('gpt-4.1-mini'),
prompt: 'What happened in San Francisco last week?',
tools: {
web_search_preview: azure.tools.webSearchPreview({
// optional configuration:
searchContextSize: 'low',
userLocation: {
type: 'approximate',
city: 'San Francisco',
region: 'California',
},
}),
},
// Force web search tool (optional):
toolChoice: { type: 'tool', toolName: 'web_search_preview' },
});
console.log(result.text);
// URL sources directly from `results`
const sources = result.sources;
for (const source of sources) {
console.log('source:', source);
}

The tool must be named web_search_preview when using Azure OpenAI's web search(preview) functionality. This name is required by Azure OpenAI's API specification and cannot be customized.

The 'web_search_preview' tool is only supported with the default responses API, and is not supported when using 'azure.chat' or 'azure.completion'

File Search Tool

The Azure OpenAI provider supports file search through the azure.tools.fileSearch tool.

You can force the use of the file search tool by setting the toolChoice parameter to { type: 'tool', toolName: 'file_search' }.

const result = await generateText({
model: azure('gpt-5'),
prompt: 'What does the document say about user authentication?',
tools: {
file_search: azure.tools.fileSearch({
// optional configuration:
vectorStoreIds: ['vs_123', 'vs_456'],
maxNumResults: 10,
ranking: {
ranker: 'auto',
},
}),
},
// Force file search tool:
toolChoice: { type: 'tool', toolName: 'file_search' },
});

The tool must be named file_search when using Azure OpenAI's file search functionality. This name is required by Azure OpenAI's API specification and cannot be customized.

The 'file_search' tool is only supported with the default responses API, and is not supported when using 'azure.chat' or 'azure.completion'

Image Generation Tool

Azure OpenAI's Responses API supports multi-modal image generation as a provider-defined tool. Availability is restricted to specific models (for example, gpt-5 variants).

import { createAzure } from '@ai-sdk/azure';
import { generateText } from 'ai';
const azure = createAzure({
headers: {
'x-ms-oai-image-generation-deployment': 'gpt-image-1', // use your own image model deployment
},
});
const result = await generateText({
model: azure('gpt-5'),
prompt:
'Generate an image of an echidna swimming across the Mozambique channel.',
tools: {
image_generation: azure.tools.imageGeneration({ outputFormat: 'png' }),
},
});
for (const toolResult of result.staticToolResults) {
if (toolResult.toolName === 'image_generation') {
const base64Image = toolResult.output.result;
}
}

The tool must be named image_generation when using Azure OpenAI's image generation functionality. This name is required by Azure OpenAI's API specification and cannot be customized.

The 'image_generation' tool is only supported with the default responses API, and is not supported when using 'azure.chat' or 'azure.completion'

To use image_generation, you must first create an image generation model. You must add a deployment specification to the header x-ms-oai-image-generation-deployment. Please note that the Responses API model and the image generation model must be in the same resource.

When you set store: false, then previously generated images will not be accessible by the model. We recommend using the image generation tool without setting store: false.

Code Interpreter Tool

The Azure OpenAI provider supports the code interpreter tool through the azure.tools.codeInterpreter tool. This allows models to write and execute Python code.

import { azure } from '@ai-sdk/azure';
import { generateText } from 'ai';
const result = await generateText({
model: azure('gpt-5'),
prompt: 'Write and run Python code to calculate the factorial of 10',
tools: {
code_interpreter: azure.tools.codeInterpreter({
// optional configuration:
container: {
fileIds: ['assistant-123', 'assistant-456'], // optional file IDs to make available
},
}),
},
});

The code interpreter tool can be configured with:

  • container: Either a container ID string or an object with fileIds to specify uploaded files that should be available to the code interpreter

The tool must be named code_interpreter when using Azure OpenAI's code interpreter functionality. This name is required by Azure OpenAI's API specification and cannot be customized.

The 'code_interpreter' tool is only supported with the default responses API, and is not supported when using 'azure.chat' or 'azure.completion'

When working with files generated by the Code Interpreter, reference information can be obtained from both annotations in Text Parts and providerMetadata in Source Document Parts.

PDF support

The Azure OpenAI provider supports reading PDF files. You can pass PDF files as part of the message content using the file type:

const result = await generateText({
model: azure('your-deployment-name'),
messages: [
{
role: 'user',
content: [
{
type: 'text',
text: 'What is an embedding model?',
},
{
type: 'file',
data: fs.readFileSync('./data/ai.pdf'),
mediaType: 'application/pdf',
filename: 'ai.pdf', // optional
},
],
},
],
});

The model will have access to the contents of the PDF file and respond to questions about it. The PDF file should be passed using the data field, and the mediaType should be set to 'application/pdf'.

Reading PDF files are only supported with the default responses API, and is not supported when using 'azure.chat' or 'azure.completion'

Typed providerMetadata in Text Parts

When using the Azure OpenAI Responses API, the SDK attaches Azure OpenAI-specific metadata to output parts via providerMetadata.

This metadata can be used on the client side for tasks such as rendering citations or downloading files generated by the Code Interpreter. To enable type-safe handling of this metadata, the AI SDK exports dedicated TypeScript types.

For text parts, when part.type === 'text', the providerMetadata is provided in the form of AzureResponsesTextProviderMetadata.

This metadata includes the following fields:

  • itemId
    The ID of the output item in the Responses API.

  • annotations (optional) An array of annotation objects generated by the model. If no annotations are present, this property itself may be omitted (undefined).

    Each element in annotations is a discriminated union with a required type field. Supported types include, for example:

    • url_citation
    • file_citation
    • container_file_citation
    • file_path

    These annotations directly correspond to the annotation objects defined by the Responses API and can be used for inline reference rendering or output analysis. For details, see the official OpenAI documentation: Responses API – output text annotations.

import { azure, type AzureResponsesTextProviderMetadata } from '@ai-sdk/azure';
import { generateText } from 'ai';
const result = await generateText({
model: azure('gpt-4.1-mini'),
prompt:
'Create a program that generates five random numbers between 1 and 100 with two decimal places, and show me the execution results. Also save the result to a file.',
tools: {
code_interpreter: azure.tools.codeInterpreter(),
web_search_preview: azure.tools.webSearchPreview({}),
file_search: azure.tools.fileSearch({ vectorStoreIds: ['vs_1234'] }), // requires a configured vector store
},
});
for (const part of result.content) {
if (part.type === 'text') {
const providerMetadata = part.providerMetadata as
| AzureResponsesTextProviderMetadata
| undefined;
if (!providerMetadata) continue;
const { itemId: _itemId, annotations } = providerMetadata.azure;
if (!annotations) continue;
for (const annotation of annotations) {
switch (annotation.type) {
case 'url_citation':
// url_citation is returned from web_search and provides:
// properties: type, url, title, start_index and end_index
break;
case 'file_citation':
// file_citation is returned from file_search and provides:
// properties: type, file_id, filename and index
break;
case 'container_file_citation':
// container_file_citation is returned from code_interpreter and provides:
// properties: type, container_id, file_id, filename, start_index and end_index
break;
case 'file_path':
// file_path provides:
// properties: type, file_id and index
break;
default: {
const _exhaustiveCheck: never = annotation;
throw new Error(
`Unhandled annotation: ${JSON.stringify(_exhaustiveCheck)}`,
);
}
}
}
}
}

When implementing file downloads for files generated by the Code Interpreter, the container_id and file_id available in providerMetadata can be used to retrieve the file content. For details, see the Retrieve container file content API.

Typed providerMetadata in Reasoning Parts

When using the Azure OpenAI Responses API, reasoning output parts can include provider metadata. To handle this metadata in a type-safe way, use AzureResponsesReasoningProviderMetadata.

For reasoning parts, when part.type === 'reasoning', the providerMetadata is provided in the form of AzureResponsesReasoningProviderMetadata.

This metadata includes the following fields:

  • itemId
    The ID of the reasoning item in the Responses API.
  • reasoningEncryptedContent (optional)
    Encrypted reasoning content (only returned when requested via include: ['reasoning.encrypted_content']).
import {
azure,
type AzureResponsesReasoningProviderMetadata,
type OpenAIResponsesProviderOptions,
} from '@ai-sdk/azure';
import { generateText } from 'ai';
const result = await generateText({
model: azure('your-deployment-name'),
prompt: 'How many "r"s are in the word "strawberry"?',
providerOptions: {
azure: {
store: false,
include: ['reasoning.encrypted_content'],
} satisfies OpenAIResponsesProviderOptions,
},
});
for (const part of result.content) {
if (part.type === 'reasoning') {
const providerMetadata = part.providerMetadata as
| AzureResponsesReasoningProviderMetadata
| undefined;
const { itemId, reasoningEncryptedContent } = providerMetadata?.azure ?? {};
console.log(itemId, reasoningEncryptedContent);
}
}

Typed providerMetadata in Source Document Parts

For source document parts, when part.type === 'source' and sourceType === 'document', the providerMetadata is provided as AzureResponsesSourceDocumentProviderMetadata.

This metadata is also a discriminated union with a required type field. Supported types include:

  • file_citation
  • container_file_citation
  • file_path

Each type includes the identifiers required to work with the referenced resource, such as fileId and containerId.

import {
azure,
type AzureResponsesSourceDocumentProviderMetadata,
} from '@ai-sdk/azure';
import { generateText } from 'ai';
const result = await generateText({
model: azure('gpt-4.1-mini'),
prompt:
'Create a program that generates five random numbers between 1 and 100 with two decimal places, and show me the execution results. Also save the result to a file.',
tools: {
code_interpreter: azure.tools.codeInterpreter(),
web_search_preview: azure.tools.webSearchPreview({}),
file_search: azure.tools.fileSearch({ vectorStoreIds: ['vs_1234'] }), // requires a configured vector store
},
});
for (const part of result.content) {
if (part.type === 'source') {
if (part.sourceType === 'document') {
const providerMetadata = part.providerMetadata as
| AzureResponsesSourceDocumentProviderMetadata
| undefined;
if (!providerMetadata) continue;
const annotation = providerMetadata.azure;
switch (annotation.type) {
case 'file_citation':
// file_citation is returned from file_search and provides:
// properties: type, fileId and index
// The filename can be accessed via part.filename.
break;
case 'container_file_citation':
// container_file_citation is returned from code_interpreter and provides:
// properties: type, containerId and fileId
// The filename can be accessed via part.filename.
break;
case 'file_path':
// file_path provides:
// properties: type, fileId and index
break;
default: {
const _exhaustiveCheck: never = annotation;
throw new Error(
`Unhandled annotation: ${JSON.stringify(_exhaustiveCheck)}`,
);
}
}
}
}
}

Annotations in text parts follow the OpenAI Responses API specification and therefore use snake_case properties (e.g. file_id, container_id). In contrast, providerMetadata for source document parts is normalized by the SDK to camelCase (e.g. fileId, containerId). Fields that depend on the original text content, such as start_index and end_index, are omitted, as are fields like filename that are directly available on the source object.

Completion Models

You can create models that call the completions API using the .completion() factory method. The first argument is the model id. Currently only gpt-35-turbo-instruct is supported.

const model = azure.completion('your-gpt-35-turbo-instruct-deployment');

OpenAI completion models support also some model specific settings that are not part of the standard call settings. You can pass them as an options argument:

import { azure } from '@ai-sdk/azure';
import { generateText } from 'ai';
const result = await generateText({
model: azure.completion('your-gpt-35-turbo-instruct-deployment'),
prompt: 'Write a haiku about coding.',
providerOptions: {
openai: {
echo: true, // optional, echo the prompt in addition to the completion
logitBias: {
// optional likelihood for specific tokens
'50256': -100,
},
suffix: 'some text', // optional suffix that comes after a completion of inserted text
user: 'test-user', // optional unique user identifier
},
},
});

The following optional provider options are available for Azure OpenAI completion models:

  • echo: boolean

    Echo back the prompt in addition to the completion.

  • logitBias Record<number, number>

    Modifies the likelihood of specified tokens appearing in the completion.

    Accepts a JSON object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this tokenizer tool to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.

    As an example, you can pass {"50256": -100} to prevent the <|endoftext|> token from being generated.

  • logprobs boolean | number

    Return the log probabilities of the tokens. Including logprobs will increase the response size and can slow down response times. However, it can be useful to better understand how the model is behaving.

    Setting to true will return the log probabilities of the tokens that were generated.

    Setting to a number will return the log probabilities of the top n tokens that were generated.

  • suffix string

    The suffix that comes after a completion of inserted text.

  • user string

    A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. Learn more.

Embedding Models

You can create models that call the Azure OpenAI embeddings API using the .embedding() factory method.

const model = azure.embedding('your-embedding-deployment');

Azure OpenAI embedding models support several additional settings. You can pass them as an options argument:

import { azure } from '@ai-sdk/azure';
import { embed } from 'ai';
const { embedding } = await embed({
model: azure.embedding('your-embedding-deployment'),
value: 'sunny day at the beach',
providerOptions: {
openai: {
dimensions: 512, // optional, number of dimensions for the embedding
user: 'test-user', // optional unique user identifier
},
},
});

The following optional provider options are available for Azure OpenAI embedding models:

  • dimensions: number

    The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.

  • user string

    A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. Learn more.

Image Models

You can create models that call the Azure OpenAI image generation API (DALL-E) using the .image() factory method. The first argument is your deployment name for the DALL-E model.

const model = azure.image('your-dalle-deployment-name');

Azure OpenAI image models support several additional settings. You can pass them as providerOptions.openai when generating the image:

await generateImage({
model: azure.image('your-dalle-deployment-name'),
prompt: 'A photorealistic image of a cat astronaut floating in space',
size: '1024x1024', // '1024x1024', '1792x1024', or '1024x1792' for DALL-E 3
providerOptions: {
openai: {
user: 'test-user', // optional unique user identifier
responseFormat: 'url', // 'url' or 'b64_json', defaults to 'url'
},
},
});

Example

You can use Azure OpenAI image models to generate images with the generateImage function:

import { azure } from '@ai-sdk/azure';
import { generateImage } from 'ai';
const { image } = await generateImage({
model: azure.image('your-dalle-deployment-name'),
prompt: 'A photorealistic image of a cat astronaut floating in space',
size: '1024x1024', // '1024x1024', '1792x1024', or '1024x1792' for DALL-E 3
});
// image contains the URL or base64 data of the generated image
console.log(image);

Model Capabilities

Azure OpenAI supports DALL-E 2 and DALL-E 3 models through deployments. The capabilities depend on which model version your deployment is using:

Model VersionSizes
DALL-E 31024x1024, 1792x1024, 1024x1792
DALL-E 2256x256, 512x512, 1024x1024

DALL-E models do not support the aspectRatio parameter. Use the size parameter instead.

When creating your Azure OpenAI deployment, make sure to set the DALL-E model version you want to use.

Transcription Models

You can create models that call the Azure OpenAI transcription API using the .transcription() factory method.

The first argument is the model id e.g. whisper-1.

const model = azure.transcription('whisper-1');

If you encounter a "DeploymentNotFound" error with transcription models, try enabling deployment-based URLs:

const azure = createAzure({
useDeploymentBasedUrls: true,
apiVersion: '2025-04-01-preview',
});

This uses the legacy endpoint format which may be required for certain Azure OpenAI deployments. When using useDeploymentBasedUrls, the default api-version is not valid. You must set it to 2025-04-01-preview or an earlier value.

You can also pass additional provider-specific options using the providerOptions argument. For example, supplying the input language in ISO-639-1 (e.g. en) format will improve accuracy and latency.

import { experimental_transcribe as transcribe } from 'ai';
import { azure } from '@ai-sdk/azure';
import { readFile } from 'fs/promises';
const result = await transcribe({
model: azure.transcription('whisper-1'),
audio: await readFile('audio.mp3'),
providerOptions: { openai: { language: 'en' } },
});

The following provider options are available:

  • timestampGranularities string[] The granularity of the timestamps in the transcription. Defaults to ['segment']. Possible values are ['word'], ['segment'], and ['word', 'segment']. Note: There is no additional latency for segment timestamps, but generating word timestamps incurs additional latency.

  • language string The language of the input audio. Supplying the input language in ISO-639-1 format (e.g. 'en') will improve accuracy and latency. Optional.

  • prompt string An optional text to guide the model's style or continue a previous audio segment. The prompt should match the audio language. Optional.

  • temperature number The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit. Defaults to 0. Optional.

  • include string[] Additional information to include in the transcription response.

Model Capabilities

ModelTranscriptionDurationSegmentsLanguage
whisper-1
gpt-4o-mini-transcribe
gpt-4o-transcribe