Runpod

The official Runpod provider contains language model and image generation support for public & private endpoints.

Setup

The Runpod provider is available in the @runpod/ai-sdk-provider module. You can install it with:

pnpm
npm
yarn
bun
pnpm add @runpod/ai-sdk-provider

Provider Instance

You can import the default provider instance runpod from @runpod/ai-sdk-provider:

import { runpod } from '@runpod/ai-sdk-provider';

If you need a customized setup, you can import createRunpod and create a provider instance with your settings:

import { createRunpod } from '@runpod/ai-sdk-provider';
const runpod = createRunpod({
apiKey: 'your-api-key', // optional, defaults to RUNPOD_API_KEY environment variable
baseURL: 'custom-url', // optional, for custom endpoints
headers: {
/* custom headers */
}, // optional
});

You can use the following optional settings to customize the Runpod provider instance:

  • baseURL string

    Use a different URL prefix for API calls, e.g. to use proxy servers or custom endpoints. Supports vLLM deployments, SGLang servers, and any OpenAI-compatible API. The default prefix is https://api.runpod.ai/v2.

  • apiKey string

    API key that is being sent using the Authorization header. It defaults to the RUNPOD_API_KEY environment variable. You can obtain your api key from the Runpod Console under "API Keys".

  • headers Record<string,string>

    Custom headers to include in the requests.

  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Language Models

You can create language models using the provider instance. The first argument is the model ID:

import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';
const { text } = await generateText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
prompt: 'What is the capital of Germany?',
});

Returns:

  • text - Generated text string
  • finishReason - Why generation stopped ('stop', 'length', etc.)
  • usage - Token usage information (prompt, completion, total tokens)

Streaming

import { runpod } from '@runpod/ai-sdk-provider';
import { streamText } from 'ai';
const { textStream } = await streamText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
prompt:
'Write a short poem about artificial intelligence in exactly 4 lines.',
temperature: 0.7,
});
for await (const delta of textStream) {
process.stdout.write(delta);
}

Model Capabilities

Model IDDescriptionStreamingObject GenerationTool UsageReasoning Notes
deep-cogito/deep-cogito-v2-llama-70b70B parameter general-purpose LLM with advanced reasoningEmits <think>…</think> inline; no separate reasoning parts
qwen/qwen3-32b-awq32B parameter multilingual model with strong reasoning capabilitiesStandard reasoning events

Chat Conversations

const { text } = await generateText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'What is the capital of France?' },
],
});

Tool Calling

import { generateText, tool } from 'ai';
import { z } from 'zod';
const { text, toolCalls } = await generateText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
prompt: 'What is the weather like in San Francisco?',
tools: {
getWeather: tool({
description: 'Get weather information for a city',
inputSchema: z.object({
city: z.string().describe('The city name'),
}),
execute: async ({ city }) => {
return `The weather in ${city} is sunny.`;
},
}),
},
});

Additional Returns:

  • toolCalls - Array of tool calls made by the model
  • toolResults - Results from executed tools

Structured output

Using generateObject to enforce structured ouput is not supported by two models that are part of this provider.

You can still return structured data by instructing the model to return JSON and validating it yourself.

import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';
import { z } from 'zod';
const RecipeSchema = z.object({
name: z.string(),
ingredients: z.array(z.string()),
steps: z.array(z.string()),
});
const { text } = await generateText({
model: runpod('qwen/qwen3-32b-awq'),
messages: [
{
role: 'system',
content:
'return ONLY valid JSON matching { name: string; ingredients: string[]; steps: string[] }',
},
{ role: 'user', content: 'generate a lasagna recipe.' },
],
temperature: 0,
});
const parsed = JSON.parse(text);
const result = RecipeSchema.safeParse(parsed);
if (!result.success) {
// handle invalid JSON shape
}
console.log(result.success ? result.data : parsed);

Image Models

You can create Runpod image models using the .imageModel() factory method.

Basic Usage

import { runpod } from '@runpod/ai-sdk-provider';
import { experimental_generateImage as generateImage } from 'ai';
const { image } = await generateImage({
model: runpod.imageModel('qwen/qwen-image'),
prompt: 'A serene mountain landscape at sunset',
aspectRatio: '4:3',
});
// Save to filesystem
import { writeFileSync } from 'fs';
writeFileSync('landscape.jpg', image.uint8Array);

Returns:

  • image.uint8Array - Binary image data (efficient for processing/saving)
  • image.base64 - Base64 encoded string (for web display)
  • image.mediaType - MIME type ('image/jpeg' or 'image/png')
  • warnings - Array of any warnings about unsupported parameters

Model Capabilities

Model IDDescriptionSupported Aspect Ratios
bytedance/seedream-3.0Advanced text-to-image model1:1, 4:3, 3:4
bytedance/seedream-4.0Text-to-image (v4)1:1 (supports 1024, 2048, 4096)
bytedance/seedream-4.0-editImage editing (v4, multi-image)1:1 (supports 1024, 1536, 2048, 4096)
black-forest-labs/flux-1-schnellFast image generation (4 steps)1:1, 4:3, 3:4
black-forest-labs/flux-1-devHigh-quality image generation1:1, 4:3, 3:4
black-forest-labs/flux-1-kontext-devContext-aware image generation1:1, 4:3, 3:4
qwen/qwen-imageText-to-image generation1:1, 4:3, 3:4
qwen/qwen-image-editImage editing (prompt-guided)1:1, 4:3, 3:4

Note: The provider uses strict validation for image parameters. Unsupported aspect ratios (like 16:9, 9:16, 3:2, 2:3) will throw an InvalidArgumentError with a clear message about supported alternatives.

Advanced Parameters

const { image } = await generateImage({
model: runpod.imageModel('bytedance/seedream-3.0'),
prompt: 'A sunset over mountains',
size: '1328x1328',
seed: 42,
providerOptions: {
runpod: {
negative_prompt: 'blurry, low quality',
enable_safety_checker: true,
},
},
});

Modify Image

Transform existing images using text prompts.

// Example: Transform existing image
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
prompt: 'Transform this into a cyberpunk style with neon lights',
aspectRatio: '1:1',
providerOptions: {
runpod: {
image: 'https://example.com/input-image.jpg',
},
},
});
// Example: Using base64 encoded image
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
prompt: 'Make this image look like a painting',
providerOptions: {
runpod: {
image: '...',
},
},
});

Advanced Configuration

// Full control over generation parameters
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-dev'),
prompt: 'A majestic dragon breathing fire in a medieval castle',
size: '1328x1328',
seed: 42, // For reproducible results
providerOptions: {
runpod: {
negative_prompt: 'blurry, low quality, distorted, ugly, bad anatomy',
enable_safety_checker: true,
num_inference_steps: 50, // Higher quality (default: 28)
guidance: 3.5, // Stronger prompt adherence (default: 2)
output_format: 'png', // High quality format
// Polling settings for long generations
maxPollAttempts: 30,
pollIntervalMillis: 4000,
},
},
});
// Fast generation with minimal steps
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-schnell'),
prompt: 'A simple red apple',
aspectRatio: '1:1',
providerOptions: {
runpod: {
num_inference_steps: 2, // Even faster (default: 4)
guidance: 10, // Higher guidance for simple prompts
output_format: 'jpg', // Smaller file size
},
},
});

Provider Options

Runpod image models support flexible provider options through the providerOptions.runpod object:

OptionTypeDefaultDescription
negative_promptstring""Text describing what you don't want in the image
enable_safety_checkerbooleantrueEnable content safety filtering
imagestring-Input image: URL or base64 data URI (required for Flux Kontext models)
num_inference_stepsnumberAutoNumber of denoising steps (Flux: 4 for schnell, 28 for others)
guidancenumberAutoGuidance scale for prompt adherence (Flux: 7 for schnell, 2 for others)
output_formatstring"png"Output image format ("png" or "jpg")
maxPollAttemptsnumber60Maximum polling attempts for async generation
pollIntervalMillisnumber5000Polling interval in milliseconds (5 seconds)